CYCLIZATION OF SUBSTITUTED 1,4-DIPHENYLTHIOSEMICARBAZIDES TO THIAZOLE DERIVATIVES

## M. Z. Peretyazhko and P. S. Pel'kis

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 3, pp. 471-472, 1967

## UDC 547.78

Heating together substituted 1, 4-diphenylthiosemicarbazides and  $\omega$ -bromoacetophenone in ethanol gives new bases and quaternary salts of 2, 3, 4-substituted thiazole.

Among thiazole derivatives are known compounds of interest because of their physiological activities [1]. In developing research on derivatives of 1,4-diphenylthiosemicarbazide, it was of interest to synthesize and study new substituted thiazoles, prepared from the semicarbazides by heating with  $\omega$ -bromoacetophenone. The literature describes the preparation of 2-arylhydrazinothiazoles, from monoarylthiosemicarbazide and its substitution products and  $\alpha$ -halogenocarbonyl compounds [2,3]. We have prepared quaternary salts of 2,3,4-substituted thiazoles (I-IX) by heating the appropriate 1,4-diphenylthiosemicarbazide derivatives with  $\omega$ -bromoacetophenone in ethanol for 5-8 hr.

It should be noted that in three cases the products were not quaternary salts, but 2,3,4 derivatives of the corresponding thiazole base (X-XII). The starting substituted 1,4-diphenylthiosemicarbazides were prepared from arylhydrazines and arylisothiocyanates [4,5]. The table gives the thiazole derivatives synthesized. They were crystalline, and had high melting points. They were purified by recrystallizing from ethanol.

## EXPERIMENTAL

Quaternary salts of 2-(p-sulfonamidophenylhydrazo)-3-[N-(p-chlorophenyl)]-4-phenylthiazole (IV). 0.65 g  $\omega$ -bromoacetophenone and 12 ml EtOH were added to 1.0 g 1-(p-sulfonamidophenyl)-4-(p-chlorophenyl)thiosemicarbazide. The mixture was heated on a water-

bath for 7 hr. The solid which separated on cooling was filtered off, and recrystallized from EtOH, mp 214° C, yield 0.93 g (62%).

Compounds I-IX were prepared similarly.

2-(Na salt p-sulfophenylhydrazo)-3-[N-(p-acetyl-amidosulfophenyl)]-4-phenylthiazole (X). 0.4 g  $\omega$ -bromoacetophenone and 20 ml EtOH were added to 1.0 g 1-(Na salt p-sulfophenyl)-4-(p-acetylamidosulfophenyl)thiosemicarbazide. The whole was heated on a water-bath for 12 hr, the solid filtered off, and recrystallized from EtOH. It did not melt at 300° C. Yield 0.6 g (57%). Found: S 16.45; 16.40%. Calculated for  $\rm C_{23}H_{19}N_4NaO_6S_3$ : S 16.97%.

2-(Na salt p-sulfophenylhydrazo)-3-[N-(p-sulfon-amidophenyl)]-4-phenylthiazole (XI). Mp  $282^{\circ}-285^{\circ}$  C (decomp). Yield 57%. Found: S 18.60; 18.63%. Calculated for  $C_{21}H_{17}N_4NaO_5S_3$ : S 18.32%.

2-(p-Tolylhydrazo)-3-[N-(p-nitrophenyl)]-4-phenyl-thiazole (XII). Mp 154°-155° C. Yield 64%. Found: S 7.91; 8.02%. Calculated for  $\rm C_{22}H_{18}N_4O_2S$ : S 7.96%.

Compounds XI and XII were prepared similarly.

## REFERENCES

- 1. Z. Budesinsky and M. Protiva, Synthetische Arzneinmittel, Berlin, 549, 1961.
- 2. H. Bayer and G. Henseke, Chem. Ber., 83, 249, 1950.
- 3. H. Bayer and H. Hohn, Chem. Ber, 85, 1122, 1952.
- 4. P. S. Pel'kis and M. Z. Peretyazhko, Ukr. khim. Zh., 26, 637, 1960.
- 5. P. S. Pel'kis and M. Z. Peretyazhko, ZhOKh, 31, 3726, 1961.

4 September 1965

Institute of Organic Chemistry AS Ukr. SSSR, Kiev

Quaternary Salts of Thiazole Derivatives

HC—S

C<sub>6</sub>H<sub>5</sub>C + C—NHNHC<sub>6</sub>H<sub>4</sub>R-p

| Com-<br>pound                                 | R                                                                                                                                                                                                                                 | R′                                                                                                                                                                                                                                | М <b>р,</b> °С                                                                          | Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S, %                                                                                                                            |                                                                             | Yield.                                             |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|
|                                               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found                                                                                                                           | Calculated                                                                  | %                                                  |
| I<br>II<br>IV<br>V<br>VI<br>VII<br>VIII<br>IX | NH <sub>2</sub> SO <sub>2</sub><br>NH <sub>2</sub> SO <sub>3</sub><br>CH <sub>3</sub> | C <sub>2</sub> H <sub>6</sub> COO<br>C <sub>2</sub> H <sub>5</sub> O<br>NO <sub>2</sub><br>Cl<br>Br<br>CH <sub>3</sub> O<br>C <sub>2</sub> H <sub>6</sub> O<br>C <sub>2</sub> H <sub>6</sub> O<br>C <sub>2</sub> H <sub>6</sub> O | 180—181<br>196—198<br>193<br>214<br>221<br>191<br>170—172<br>(decomp)<br>139<br>177—178 | C <sub>24</sub> H <sub>22</sub> BrN <sub>4</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>25</sub> H <sub>23</sub> BrN <sub>4</sub> O <sub>3</sub> S <sub>2</sub><br>C <sub>21</sub> H <sub>18</sub> BrN <sub>5</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>21</sub> H <sub>18</sub> BrCiN <sub>4</sub> O <sub>2</sub> S <sub>2</sub><br>C <sub>21</sub> H <sub>18</sub> Br <sub>2</sub> N <sub>4</sub> O <sub>3</sub> S <sub>2</sub><br>C <sub>22</sub> H <sub>21</sub> BrN <sub>4</sub> O <sub>3</sub> S <sub>2</sub><br>C <sub>23</sub> H <sub>21</sub> BrN <sub>3</sub> N <sub>4</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>23</sub> H <sub>21</sub> BrN <sub>3</sub> N <sub>4</sub> O <sub>4</sub> S <sub>2</sub><br>C <sub>24</sub> H <sub>24</sub> BrN <sub>3</sub> O <sub>5</sub><br>C <sub>25</sub> H <sub>24</sub> BrN <sub>3</sub> O <sub>5</sub> | 11.59 11.61<br>11.27 11.28<br>11.54 11.53<br>11.92 11.89<br>11.20 11.23<br>11.69 11.65<br>11.61 11.63<br>6.58 6.47<br>6.19 6.28 | 11.13<br>11.70<br>11.67<br>11.90<br>10.99<br>12.00<br>11.22<br>6.63<br>6.28 | 72<br>59<br>60<br>62<br>60<br>77<br>64<br>85<br>70 |